Evidence of an evolutionary-developmental trade-off between drag avoidance and tolerance strategies in wave-swept intertidal kelps (Laminariales, Phaeophyceae).
نویسندگان
چکیده
Kelps are a clade of morphologically diverse, ecologically important habitat-forming species. Many kelps live in wave-swept environments and are exposed to chronic flow-induced stress. In order to grow and survive in these harsh environments, kelps can streamline (reducing drag coefficient) to avoid drag or to increase attachment and breakage force to tolerate it. We aimed to quantify the drag tolerance and streamlining strategies of kelps from wave-swept intertidal habitats. We measured drag coefficient and tenacity of populations from eight kelp species over a wide range of sizes to determine whether kelps avoid dislodgement by reducing drag coefficient or by increasing tenacity as they grow, and whether these traits are traded off. We employed phylogenetic comparative methods to rule out potentially confounding effects of species' relatedness. There was a significant negative relationship between drag avoidance and tolerance strategies, even after incorporating phylogeny. Kelps that were more tenacious were less able to reduce drag, resulting in a continuum from "tolerators" to "streamliners," with some species demonstrating intermediate, mixed strategies. Drag and tenacity were correlated with geometric properties (i.e., second moment of area) of the stipe in large kelps. Results presented in this study suggest that kelps are either strong or streamlined, but not both. This continuum is consistent with avoidance and tolerance trade-offs that have been documented in many different biological systems and may have widespread implications for the evolution of large macroalgae, perhaps driving morphological diversity within this group.
منابع مشابه
Experimental transplants of the large kelp Lessonia nigrescens (Phaeophyceae) in high-energy wave exposed rocky intertidal habitats of northern Chile: Experimental, restoration and management applications
Potential for addressing ecological and physiological issues becomes severely limited when the organisms required to experimentally test specific hypotheses are absent from the study areas. This report describes a simple and inexpensive device for re-planting kelps into the lower intertidal zone of wave-swept rocky habitats, using Lessonia nigrescens Bory as a model organism. The device allows ...
متن کاملKelp versus Coralline: Cellular Basis for Mechanical Strength in the Wave-swept Seaweed Calliarthron (corallinaceae, Rhodophyta)
Previous biomechanical studies of wave-swept macroalgae have revealed a trade-off in growth strategies to resist breakage in the intertidal zone: growing in girth versus growing strong tissues. Brown macroalgae, such as kelps, grow thick stipes but have weak tissues, while red macroalgae grow slender thalli but have much stronger tissues. For example, genicular tissue in the articulated coralli...
متن کاملConvergent evolution of vascular optimization in kelp (Laminariales).
Terrestrial plants and mammals, although separated by a great evolutionary distance, have each arrived at a highly conserved body plan in which universal allometric scaling relationships govern the anatomy of vascular networks and key functional metabolic traits. The universality of allometric scaling suggests that these phyla have each evolved an 'optimal' transport strategy that has been over...
متن کاملDrag reduction in wave-swept macroalgae: alternative strategies and new predictions.
PREMISE OF THE STUDY Intertidal macroalgae must resist extreme hydrodynamic forces imposed by crashing waves. How does frond flexibility mitigate drag, and how does flexibility affect predictions of drag and dislodgement in the field? METHODS We characterized flexible reconfiguration of six seaweed species in a recirculating water flume, documenting both shape change and area reduction as fro...
متن کاملEffects of Wind Waves versus Ship Waves on Tidal Marsh Plants: A Flume Study on Different Life Stages of Scirpus maritimus
Recent research indicates that many ecosystems, including intertidal marshes, follow the alternative stable states theory. This theory implies that thresholds of environmental factors can mark a limit between two opposing stable ecosystem states, e.g. vegetated marshes and bare mudflats. While elevation relative to mean sea level is considered as the overall threshold condition for colonization...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of phycology
دوره 52 1 شماره
صفحات -
تاریخ انتشار 2016